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ABSTRACT 
 

This article contributes to the debate on time series properties of commodity cash and futures 
markets and the impact of speculation on commodity futures markets. We reconcile production 
theory, which predicts cash commodity prices will be mean-reverting, with the efficient market 
hypothesis which is consistent with unit root process for futures prices. It is shown that when 
the underlying cash price series does not contain a unit root, a nearby futures price series can be 
nonlinear, having martingale properties within each contract segment, and mean-reverting 
changes at contract rollover points. We develop a novel ECM-BEKK-MEX model that handles 
nonlinearities in futures prices in a simple and practical way, and allows full flexibility in 
modeling the impact of speculation on conditional cash and futures price variances while 
preserving positive definiteness of the bivariate variance matrix. The model is applied to the U.S. 
dairy sector. Results suggest cheddar cheese futures markets represent the primary center for 
cheese price discovery, although both information flows and volatility spillovers are 
bidirectional. Net long speculative positions do not forecast the direction of change of futures 
prices, but more speculation, as measured by Working’s T index, is associated with a lower 
conditional variance of futures prices in the next period.  
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Introduction 

In the aftermath of the major commodity price shocks of 2007 and 2008 there has been 
considerable interest in the performance of commodity futures markets. Masters (2008) has 
argued that speculative activity was “one of, if not the primary factor” affecting commodity 
prices. The sentiment that excessive speculation should be curbed even led to recent policy 
changes. The U.S. Commodity Futures Trading Commission (CFTC) voted in 2011 to impose 
lower limits on the number of contracts speculators can hold in 28 commodity futures markets.   

 The hypothesis that speculators, rather than fundamental market factors, were behind 
dramatic commodity price shocks was subsequently challenged by many authors (e.g. Hamilton 
2009; Irwin, Sanders and Merrin 2009; Brunetti, Buyuksahin and Harris 2011; Irwin and 
Sanders 2012). However, most of the studies on this topic have focused on institutional 
investors that passively hold long-only positions, commonly referred to as Index Funds. In 
addition, they focus on futures markets with relatively large volume.  

In thin futures markets the volume may not be sufficiently high to generate trade 
interest of large institutional investors. In these markets most speculation is likely coming 
from smaller, non-professional speculators.  Consequently, speculation may represent a smaller 
total market share relative to deeper markets (Fortenbery 2011).  However, the fact that the 
speculators in thin markets may represent a less informed trader that relies more on technical 
versus fundamental market information to generate trade activity implies their trade decisions 
may exacerbate the level of market noise (Fortenbery and Zapata, 2004). When noise traders 
are present, even more informed speculators may contribute to higher market volatility as their 
trade decisions take into account not just market fundamentals, but the anticipated reaction of 
noise traders to past price movements (de Long et al. 1990).  

Dairy futures markets satisfy the conditions indicated by the authors cited above that 
could lead to destabilizing speculation. Dairy futures markets are relatively thin.  Less than 10 
percent of total U.S. milk production is hedged, and total open interest, while growing over 
time, is still very small.1 In addition, dairy markets have a long history of determining cash milk 
prices milk off very thin spot markets for derived products (cheese, butter and nonfat dry milk) 
(GAO 2007). In such an environment it is conceivable that speculation-induced volatility in 
futures may lead to reduced cash price stability even when fundamental factors do not warrant 
price changes. 

                                                 
1 For example, on September 24, 2013 Class III milk futures and options (the most liquid of the dairy markets) 
reported open interest of only 36,821 contracts.  In contrast, the corn market reported a total open interest of just 
under 1.7 million contracts.  Further, professionally managed money and swap dealers represented almost 40 
percent of total long corn open interest, and over 31 percent of short open interest.  Small non-reportable traders 
(which include small speculators and hedgers) accounted for about 10 percent of long open interest and 17 
percent of the short side.  Commercial firms (primarily hedgers) represented 23 percent of the long and 26 percent 
of the short corn open interest.  In the Class III market, professionally managed money and swap dealers 
accounted for only 3.8 percent of long open interest, and 12.7 percent of the short side. Non-reportable traders 
accounted for 11 percent of long open interest and 25 percent of short interest.  Commercial firms dominated 
accounting for over 51 percent of the long side 37 percent of short open interest. 
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 This paper makes three contributions to the literature. The first contribution regards 
the the stationarity properties of futures and cash prices. Analyses of the impacts of futures 
speculation on price performance in cash and futures markets requires modelling of the joint 
cash and futures price and volatility dynamics. Correct model specification of joint price 
dynamics requires careful consideration of stationarity assumptions. Since Samuelson (1965) it 
has been understood that unbiased futures markets will behave as martingale process, i.e. a 
time series of futures prices will contain a unit root. For this reason, applied works where cash-
futures relationships are analyzed tend to rely on the assumption that both futures and cash 
prices behave similarly. In other words, cash prices are also treated as unit root processes. This 
assumption allows the utilization of standard nonstationary time series methods (e.g. Bessler 
and Covey 1991; Schroeder and Goodwin 1991; McKenzie and Holt 2002; Frank and Garcia 
2009).  

However, commodity price theory does not predict permanent shocks to equilibrium 
cash prices, nor does it require cash prices to behave as a non-stationary process (Williams and 
Wright 1991; Deaton and Laroque 1992; Wang and Tomek 2007; Pirrong 2012). In this paper 
conditions are presented under which cash commodity prices behave as a stationary series, and 
the implications on measuring price dynamics between cash and continuous nearby futures 
prices are presented. We show that when cash prices do not have a unit root, nearby futures 
prices can be nonlinear, having martingale properties within each contract segment, and mean-
reverting changes at contract rollover points. We then build an error-correction model able to 
handle these conditions in a simple and practical way.    

Our second contribution is a new model for analyzing impacts of speculative activities on the 
conditional variances of cash and futures prices. Where GARCH-type models can be used to 
examine volatility dynamics, a BEKK specification is often employed to guarantee a positive 
definite covariance matrix (Engle and Kroner, 1995). While BEKK-type approach can 
accommodate additional regressors in the variance model (e.g. a measure of speculative 
activity), the quadratic form-based approach does not allow marginal impacts of added 
regressors on the conditional variance to be negative. This presents a major problem when 
modeling the impact of speculators on conditional covariance matrix of cash and futures prices, 
as it does not allow the model to reveal a potentially stabilizing effect of speculation. We 
develop a novel augmented BEKK-type model (referred hereafter as BEKK-MEX) that allows 
full flexibility in modeling the determinants of conditional cash and futures price variance 
while preserving positive definiteness of the bivariate variance matrix.  

 The final contribution is the application of an error-correction model with BEKK-MEX 
volatility dynamics to analyze the information flows and volatility spillovers between cash and 
futures dairy markets, as well as the effects of futures speculation on the stability of cash and 
futures prices for milk.  

The paper proceeds as follows. The first section expands on the discussion of the properties 
of cash and futures prices. Section two presents unit root tests of the dairy prices used in the 
empirical analysis. In the third section, the ECM-BEKK-MEX model is introduced. Section four 
contains the results of the econometric analysis, followed by a discussion of findings and 
suggestions for further research.  
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Price dynamics in spot and futures commodity markets 

In order to appropriately model the information flow between cash and futures markets, it 
is important to understand the time series properties of both cash and futures prices. In 
particular, when prices are non-stationary, estimating models in price levels may result in 
spurious regressions (Granger and Newbold 1974; Phillips 1986). In addition, estimating 
models with differenced series might also result in a misspecified model, and it would be more 
appropriate to utilize the cointegration framework (Hamilton, 1994).  

Theoretical priors regarding time series properties of agricultural commodity cash and 
futures prices are remarkably different. Structural models of commodity price dynamics 
suggest non-linear cash price processes characterized by occasional price spikes that are 
eventually dissipated unless markets have gone through a structural change (Williams and 
Wright 1991; Deaton and Laroque 1992; Pirrong 2011). Tomek and Wang (2007) review the 
literature on unit roots in commodity cash prices and find that unit root test results are 
sensitive to the specification of the test question. More recent research reveals that once 
structural breaks and nonlinearities are taken into account, tests often reject unit root 
hypothesis of cash commodity prices (Balagtas and Holt 2009; Enders and Holt 2012). In 
addition, analyses of the term structure of futures prices suggests cash prices are perceived by 
market participants as mean-reverting (Bessembinder et al 1995, Bozic et al, 2012).  

Rather than debating the cash price properties on statistical grounds, it will be more 
productive to summarize the implications from economic theory. The fundamental property of 
cash prices emerging in perfectly competitive markets is the necessity of zero long-run 
economic profits for the marginal producer. This implies profit margins over time behave as 
mean-reverting time series. If the long-run industry average cost curve is flat (a case of 
constant returns to scale), any shift in the demand function will produce only a temporary 
shock to cash prices. However, even with constant long run average costs, if production cannot 
adjust quickly to demand shocks in the short run, cash prices may exhibit high a degree of 
persistency and rather slow reversion to long-run averages. For example, with annually 
harvested commodities, demand shocks cannot be compensated for by increases in supply prior 
to the next harvest (assuming no imports from outside the market region). If returns to scale 
are decreasing, then shifts in demand will manifest as permanent shocks to cash prices. Finally, 
permanent changes in input costs will shift the long-run average cost curve and thus induce a 
structural change in cash price series. 

While the time series properties of cash prices are argued based on production theory, the 
time series characteristics of futures prices emerge from the theory of finance (Samuelson, 
1965). If a futures market is efficient (i.e. if futures prices fully account for all available 
information) then prices within a single contract will be martingales if the marginal risk 
premium is zero, submartingales if marginal risk premium is positive (i.e. futures are 
downward biased and traders having long positions are rewarded), and supermartingales if the 
marginal risk premium is negative (i.e. futures are upward biased and traders having short 
positions are rewarded). In any case, by deducting the marginal risk premium we can arrive at a 
martingale series whose direction of change cannot be predicted based on currently available 
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information. From this it follows that whether the risk premium is present or not, efficient 
futures prices will be nonstationary, i.e. shocks to futures prices will to be permanent.  

While the efficient market hypothesis has clear implications for time series behavior of futures 
prices within a single contract, the collection of observed futures prices for differing delivery 
dates constitutes a panel of partially overlapping time series (Smith, 2005). This data structure 
does not permit the use of standard unit root tests, so a common practice is to form a single 
futures price time series by choosing only one price observation per unit of time. A continuous 
futures price series is constructed by choosing segments from consecutive contracts at the time 
when each contract was the jth contract to maturity, as illustrated by Figure 1 for the 1st nearby 
series. It has been recognized that conflating the panel of futures prices to a single price series 
may induce complicated nonlinear dynamics in the data (Smith, 2005).    
For example, consider a situation where the underlying cash prices are mean-reverting. 
Suppose a cash price series for a commodity is second-order stationary. Let  be the 
unconditional mean of the cash price, and 2

c  the unconditional variance. By the Wold 
decomposition theorem (Wold, 1954), there exists the unique fundamental moving average 
representation of the cash price stochastic process: 

 
0
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where    0 1, 0,E 0, k.t t t kE         Suppose that a futures contract is written for that 
commodity, and for simplicity, assume that there is no basis at futures contract expiry, i.e. the 
terminal futures price equals the cash price at the contract expiration. Finally, assume that 
futures prices are efficient and embody no risk premium. Denote futures price at time t for a 
contract that expires at time kT by kT

tf . Let the first nearby futures price series be constructed by 
rolling contracts over one day before the expiration date: 
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The proofs are given in Appendix A. Equation (3) confirms that the futures price series within a 
single contract will be martingale. Equation (4) reveals that a nearby futures prices series will 
not have the martingale properties, as changes in the nearby price sequence at rollover time are 
partially predictable. Finally, equation (5) demonstrates that the long-run expected value of a 
nearby futures price series equals the unconditional mean of the cash price. This characteristic 
is shared with any second-order stationary series: if a variable is second-order stationary then 
forecasts of the variables value far into the future will eventually converge to an uninformed 
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prior which is the unconditional mean of the variable. That must be so since any shocks that 
explain current deviations of that variable from its unconditional mean will eventually die out. 
The result that the long-run forecast of the first nearby futures price series is the unconditional 
mean of the cash price stands in sharp contrast to characteristics of series that exhibit 
martingale properties. 
 

Price dynamics in spot and futures commodity markets 

The primary objective of this research is to evaluate information flows between spot and 
futures markets in the dairy sector. While we are ultimately interested in price discovery for 
milk, there is in fact no national spot market for fluid milk. As illustrated in Figure 2, farm-
level milk prices are strongly linked to the prices of cheddar cheese, and the correlation 
between U.S. average mailbox milk price and the monthly average cheddar cheese price is 0.94.2 
Thus, a second best approach to investigating cash-futures relationships in the dairy sector 
seems to be to look at the cash and futures markets for cheese.3 

The Chicago Mercantile Exchange (CME) operates a daily spot market for cheddar 
cheese. The cheese is traded as 40lbs blocks and 500lbs barrels, and both prices are reported 
daily. This market is often regarded as thin, given that only a handful of trades occur each day. 
Nevertheless, it is precisely this market that serves as the price discovery center for all 
commodity cheese in the U.S. Although cheese futures were among the first dairy futures 
contracts created in the early 1990s, the contracts were discontinued after the federal milk 
marketing order (FMMO) reform of 2000. Since 2000 there were no cheese futures available 
until a new cash-settled cheese futures contract started trading in July 2010. Since 2000 the 
central and most active dairy futures market has been for Class III milk.4 One approach to 
modeling information flows between dairy spot and futures prices would be to use the cheddar 
cheese spot and Class III milk futures prices. However, Class III milk prices are not determined 
solely based on cheddar cheese prices. Per FMMO milk pricing rules, the Class III milk price is 
determined as a linear function of cheddar cheese, dry whey and butter prices. This induces a 
no-arbitrage relationship between futures prices for Class III milk, butter, dry whey and 
cheddar cheese. Butter futures traded throughout the 2000s, and dry whey futures started 
trading in 2007. Therefore, for the period 2007-2010, synthetic cheese futures can be 
constructed using the no-arbitrage rule as described in Bozic and Fortenbery (2012). Prior to 
2007 dry whey prices were very stable. For that reason Bozic and Fortenbery (2012) use 

                                                 
2 The mailbox price is the price for fluid milk received at the farm level. 
3 Pricing of milk in the U.S. is highly regulated under Federal Milk Marketing Orders (FMMO) with federal 
regulations setting the minimum prices that handlers of Grade A milk must pay to farmers. The fundamental 
principle currently used to determine the minimum milk price is to infer the value of milk from the price of milk 
ingredients that have desirable nutritional qualities: casein, butterfat, and other milk solids (lactose, whey 
proteins, and minerals). Values of the principal milk components are inferred from national average prices for 
commodity dairy products: cheddar cheese, butter, dry whey and non-fat dry milk (Bozic and Fortenbery 2012). 
4 Class III milk is Grade A milk used to produce cream cheese and hard manufactured cheese. 
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expected dry whey prices in conjunction with the no-arbitrage relationship to create very 
precise approximate cheese futures for the period 2000-2007.  

The spread between spot and futures cheese prices is presented in Figure 3. The cheese 
futures contract cash-settles against the monthly weighted average of NASS surveyed cheddar 
cheese prices. The CME spot cheddar cheese price serves as a price discovery tool for pricing 
cheese in off-exchange commercial transactions reported the following week in NASS surveys. 
For these two reasons the spread between spot and futures prices is minimized not at contract 
expiration but one month prior to contract expiry. It follows that the information flows should 
be examined using the 2nd nearby futures price series. 

Descriptive statistics for weekly cheddar cheese spot and futures prices as well as trade 
data extracted from the weekly Commitments of Traders reports are given in Table 1. The data 
span 2000-2013.   

To evaluate the time series properties of cheese cash and futures prices we employ two 
widely used unit root tests: the Augmented Dickey-Fuller (ADF) with automatic lag selection 
based on AIC criteria and the Phillips-Perron test (PP) (Said and Dickey 1984; Phillips and 
Perron 1988). In addition, we perform the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
stationarity test (Kwiatkowski et al. 1992). ADF and PP assume the unit root process as the 
null hypothesis, whereas the KPSS test uses stationarity as the null, with unit roots as the 
alternative hypothesis. Therefore, for a series to be judged as unit root process, ideally one 
would find that both ADF and PP fail to reject the null, while KPSS rejects the null.  

Prior to conducting these statistical tests, prices were transformed to log-prices. Cash 
prices were also deseasonalized, and an exogenous structural break was imposed in January 
2007 to account for the effect emerging dairy exports and rising livestock feed prices had on 
average prices of milk. Results of the unit root tests are presented in Table 2. The null 
hypothesis of unit roots is strongly rejected for cash cheese prices in both the ADF and PP 
tests, while KPSS fails to reject the null. This should not be very surprising. In annually 
harvested commodities with sufficiently high data frequency one is likely to discover shocks to 
be highly persistent. In contrast, cheese is produced daily. Furthermore, anecdotal evidence 
suggests there is excess capacity in the U.S. cheese industry so when prices of cheese rise 
relative to prices of dry milk products, more milk is diverted to cheese manufacturing, and 
supply fairly quickly compensates for most demand shocks.  

What is surprising, however, is that all three tests indicate nearby cheese futures prices 
are also stationary. This result would seem to question market efficiency in the futures market, 
as a mean-reverting futures price process would suggest predictable returns to positions in 
futures markets.  

However, the results may be a consequence of a misspecified model, as the unit root 
tests employed assume a linear time series process. Further insight is gained by careful 
examination of the regressions in the unit root tests. As explained in the previous section, 
when the underlying cash price series is stationary, a nearby futures price series can be 
nonlinear, having martingale properties within each contract segment, and mean-reverting 
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changes at contract rollover points. Consider the ADF test for unit root autoregression with no 
drift. The estimated regression is  

 1 1 2 2 1 1 1...t t t p t p t tf f f f f                       (6) 

where 1t t tf f f    . The true process under the null hypothesis of a unit root is assumed to be 
the same specification as in (6) with 0  and 0  . The OLS t test for 0  has a non-
standard distribution and critical values are the same as in Dickey-Fuller (1979) test.  

Using a continuous nearby futures price series, at rollover time, 1
1

k kT T
t t tf f f

   , where 

,kt T  i.e. the prices being differenced are for two different delivery months. Consider a 
regression equivalent to (6) but with a restriction that differenced prices always use the same 
contract month. In particular, define 1

k kT T
t t tf f f    , and 1 1

kT
t tf f  . In Table 2. we refer to ADF 

tests with this refinement simply as Modified ADF tests. When rollovers are carefully treated in 
constructing differenced prices, the t-statistics of the lagged price variable are very small, and 
the null hypothesis of unit roots is never rejected.5 Therefore, these results suggest that unit 
root results based on standard ADF tests may be driven by the nature of the price changes at 
the rollover time. In particular, this indicates that nearby futures price series are nonlinear - 
martingales within each contract segment, and mean-reverting at contract rollovers.  

One other possible reason cheese futures may appear to be stationary using the classical 
unit root tests is the influence of measurement errors introduced while constructing synthetic 
cheese futures. As a robustness check, unit roots tests are performed for Class III milk futures, 
which are tightly linked to cheese futures as cheese constitutes over 80% of value of Class III 
milk. Results of the unit roots tests follow the same pattern as cheese futures, and modified 
ADF test statistics are found to be substantially smaller than ADF test statistics. As such, we 
can rule out the impact of measurement error on the time series properties of cheese futures.  

A further analysis demonstrating the nonlinear nature of nearby futures prices is 
conducted by evaluating the time series properties of the cash-futures price spread, denoted 

,j td and defined as the difference between contemporaneous average cash prices and jth nearby 

futures prices: , ,j t t j td c f  . If the nearby futures were indeed represented by a unit root 
process, and if the cash price was truly stationary, then no linear combination of the two series 
could be stationary. Results reported for spreads calculated using second and fifth nearby 
futures demonstrate the spreads are found to be strongly stationary, further corroborating our 
conclusions that the nearby futures price series is in fact non-linear.  

                                                 
5 Dairy futures contracts trade for delivery every month in contrast to other agricultural futures.  Thus, the 
problems introduced by the roll-over period occurs with much higher frequency in dairy than other agricultural 
commodities and may explain why this has not been observed in earlier works testing for unit roots in grain and 
livestock futures. 
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Information flows between cheese futures and cash markets 

When examining the information flow between cash and futures markets, it is standard 
practice to use the cointegration framework developed by Johansen and Juselius (1990). 
Bessler and Covey (1991) were among the first to introduce this method to commodity price 
analysis. Examples relevant for this chapter also include Fortenbery and Zapata (1997) and 
Thraen (1999) where co-integration was used in analyses of dairy futures and cash markets. 
Given the results of unit root tests presented here, it makes little sense to pursue a standard 
cointegration approach.  Since the cash prices are clearly not an integrated process, and nearby 
futures price seems to be a nonlinear concatenation of unit-roots within-contract segments 
and mean-reverting changes at contract rollovers, a different strategy is necessary. As a result, 
an error-correction model is constructed with the role of the cointegrating vector taken by the 
spread between cash and the 2nd nearby futures price. The basic idea of cointegration is that if 
two integrated variables get too far apart, at least one of them will adjust to bring the variables 
closer together. A framework that allows the difference between cash and futures cheese prices 
to carry valuable forecasting information seems like a reasonable approach given the data 
characteristics identified earlier. Such spreads have been shown in the previous section to 
exhibit strong mean-reverting characteristics, so the basic model that naturally presents itself 
is the following: 

 
1 1 1 1 1 1

1 1

2 2 2 2 1 2
1 1

p p
j

t i t i i t i t t
i i
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    

  
 

  
 

       
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 

 
  (7) 

where 1 1 1
j

t t td c f    , and all futures prices are for the second nearby contract, with j being 
the contract month/year index of the second-nearby contract at time t . In the above model, 
information flow between the two markets can arise from two effects. First, short-term 
dynamics, captured by parameters , k 1,2; 1,...,ki i p   , may be important. For example, cash 
cheese markets trades for only ten minutes each morning, from 10:45 to 10:55am. Any news 
arriving after the close of the cash market, but while futures trading is still open, will affect the 
futures prices on day t, but not cash prices. Therefore, if futures markets close higher in t 
compared to t-1, that may have predictive power for cash price changes at trading session on 
date t+1. The other source of information flow may come from the spread between the cash 
and the second nearby futures price. If the spread between the cash and futures price is 
abnormally large, one of these two variables will have to eventually adjust and reduce the 
spread. If futures prices accurately anticipate the average cash price near the contract expiry, 
then the spread between cash and the futures price will have forecasting power in predicting 
changes in cash prices. 

In addition to forecasting price changes, another topic of interest centers on volatility 
dynamics and spillovers between the two markets. The conditional variance of errors is 
modeled using the BEKK structure:  
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Finally, the model needs to allow the examination of the impact of speculative activity 
on volatility levels and dynamics. A standard method to include additional regressors to BEKK 
variance model is to expand the structure to what is called BEKK-X: 
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Given that the coefficients next to the additional regressors enter the variance equation 
in quadratic form, the signs of the coefficients for the impact on variance of both cash and 
futures prices are always positive. To see that, expand 1' tD Dx  as follows 
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It turns out that the BEKK specification can only test whether the increase in an 
additional regressor in the variance equation is associated with an increase in the conditional 
variance of cash and futures prices. As such, a hypothesis that higher speculative presence may 
reduce the conditional variance of futures prices cannot be easily tested with this model 
specification, and an alternative model structure needs to be developed.  

One existing alternative to BEKK that would allow needed flexibility is a bivariate 
EGARCH model introduced by Nelson (1991). In the EGARCH model the logarithm of the 
conditional variance is modeled as a linear function of past conditional log-variances and 
magnitudes of realized shocks in the previous period. The exponential form allows this 
modeling approach to admit additional regressors in the variance equation while preserving the 
positive definiteness of the conditional covariance matrix. However, this model is highly 
nonlinear which presents estimation problems and in our case convergence could not be 
obtained.   

The alternative presented here is the BEKK model augmented to allow more flexible 
treatment of additional regressors in the variance equation while preserving the positive-
definiteness of the conditional covariance matrix. This is achieved by introducing the 
additional regressors through an exponential function that multiplies the BEKK structure:  

  1

2

~ ,      t
t t t t

t

N


 

 
 

0 H H X H     (12) 
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where tH is given by the expression in (9), the symbol   stands for the Hadamard product, i.e. 

element-by-element multiplication, and the matrix tX is defined as  

 t

e

e e

 
  
 

1 t-1

12 t-1 2 t-1

ξ x

ξ x ξ x
X   (13) 

 

Due to the BEKK form, tH will be positive definite, and to insure positive definiteness of tH it 

will suffice to impose the following restriction on parameters 12ξ : 

  1

2
12 1 2ξ ξ + ξ   (14) 

 

Denote the elements of tH as   

 11,

12, 22,

t
t

t t


 
 

  
 

H   (15) 

 

Since the exponential form is used for all elements of tX , the diagonal elements of tH will be 

positive. To insure positive definiteness of tH  it will be sufficient that the determinant of the 

tH  matrix is positive.  

  2

11, 22, 22, 0t t t te e e    1 t-1 2 t-1 12 t-1ξ x ξ x ξ xH   (16) 

 

With restriction (14) this is reduced to  

  2

11, 22, 22,t t t te     
 

1 t-1 2 t-1ξ x +ξ xH   (17) 

 

The positive range of the exponential function together with positive-definiteness of 

tH imposed by the BEKK structure jointly guarantees that tH will be positive-definite. In 
practice, we recommend starting with the unrestricted version given in (13), and after the 
model is estimated checking for positive-definiteness of the conditional covariance matrix for 
each observation. If conditional covariance matrices are not positive definite for all time points, 
the restriction stated in (14) will resolve the problem. The new model is referred to as BEKK-
MEX, where MEX stands for multiplicative exponential heteroskedasticity. 

BEKK-MEX has four important characteristics. First, the covariance matrix is always 
positive definite, as demonstrated in (17). Second, since the exponential function is always 
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positive, signs of coefficients ,1 2ξ ξ do not need to be restricted as in (11). Third, if additional 

regressors do not explain volatility, i.e. 1 12 2ξ = ξ = ξ = 0 , the model collapses to a standard 
BEKK model. Finally, with restriction (14) additional regressors impact only conditional 
variances of individual series, but not conditional correlation directly:  

 
  1

1 1 2 1

1

2
12, 12, 12,

1 1
11, 12, 11, 22,2 2

11, 22,

t

t t

t t t
t

t t t t
t t

e

e e

  


    



 

  
1 2ξ +ξ x

ξ x ξ x


 

  (18) 

 

However, conditional correlation is time-varying, and influenced by additional regressors 
indirectly, through impacts on lagged conditional variances that enter the BEKK structure.  

The complete model for evaluating information flows between cash and futures prices, 
and the influence of speculators on both price levels and volatility dynamics is as follows: 

 1 11 1 14 4 11 1 14 4 1 1 1

2 21 1 24 4 21 1 24 4 1 2 1 2

... ...

... ...

i i
t t t t t t t

i i i
t t t t t t t t

c c c f f d

f c c f f SPEC d

      

       
    

     

            

             
  (19) 

 

 1

2

0 0 1 1 -1

~ 0,      t
t

t

t t t

t t t t

N



  

 
 
 



     

H

H X H

H B B A A G H G

    (20) 

 
1 1 1 1

12 1 12 1 2 1 2 1

t t

t t t t

c w

t c w c w

e

e e

 

   

 

   



 

 
  
 

X   (21) 

 

In the MEX matrix, we have used lagged cash prices in addition to a measure of 
speculative adequacy, to control for possible confounding if speculative activity coincides with 
cycles in milk prices and volatility increases in price levels.  

A classical measure of speculative adequacy is called Working’s T, and was introduced by 
Working (1960). Working’s T measures the ‘adequacy’ of speculation. The minimum value is 
equal to 1, and the index takes that value when speculative positions just suffice to offset net 
commercial positions. Markets with T-index less than 1.15 are considered to have insufficient 
liquidity (Irwin and Sanders, 2010).  

Denote commercial long (short) positions with LH  SH and noncommercial, (i.e. 

speculative) long (short) positions by LS  SS , all measured by the number of contracts held. 
When short hedging exceeds long hedging, Working’s T is calculated as  

 
2

1L L S

S L S L

S H S
T

H H H H


  

 
  (22) 
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If the hedging position is net long, (i.e. L SH H ) then the formula becomes  

 1 L

S L

S
T

H H
 


  (23) 

 

To calculate T, all open interest has to be allocated to these four categories ( LH , SH , SS

, LS ) . That means that nonreportable positions, for which no information is available relative 
to their speculative or hedging nature, have to be allocated to the above categories. Following 
Rutledge (1977) and Irwin and Sanders (2010) nonreportable positions are allocated to the 
commercial and noncommercial categories in the same proportion as that which is observed for 
reporting traders. For robustness, alternative model specifications similar to Peck (1980) are 
estimated where nonreportable positions are allocated to obtain either upper or lower bounds 
of Working’s T index (in other words, all nonreportables are treated either as hedgers or 
speculators). While Working’s T is used for the volatility model, the net long speculative 
position, as a percent of total open interest, is used as a measure of speculative pressure on 
futures price levels in equation (9).  

 

Results and discussion 

The results of the model (19)-(21) are presented in Tables 3 and 4. Since the conditional 
covariance matrix is found positive for each time period, it is not necessary to impose equation 
(14) as a restiriction.6  

Coefficients in the mean equation indicate bi-directional Granger causality. First, cash-
futures spread has strong predictive power in anticipating later cash prices. The negative 
coefficient 1  indicates that when cash prices are higher than futures prices, cash prices in the 
next period are forecast to decline. In addition, the previous week’s changes in futures prices 
are predictive of cash price changes. The coefficient 2  in the futures price equation is also 

statistically significant, though six times lower in absolute value than 1  indicating that futures 
markets are the primary center of price discovery. However, this result may be an artefact of 
utilized data frequency. As stated above, daily spot trading in cheese is closed at 10:55am, while 
end-of-day futures prices are collected at 1:10pm. Anecdotal evidence offered by dairy traders 
suggests that the cash market does play an important role in price discovery. Further research 
using the intraday futures prices is needed to examine that claim. Net long speculative 
positions are not found to be predictive of futures price changes.  

                                                 
6 To conserve space, the results for the five alternative specifications estimated for robustness checks are available 
from the authors. 
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Elements of the A and G matrices capture volatility spillovers between cash and futures 
markets. In particular, if 21 210, 0a g   then past futures price shocks and conditional 

variances do not help forecast the cash price conditional variance. Likewise, if 12 0a   and 

12 0g   then past cash price shocks and conditional variances do not have forecasting power for 
the futures price conditional variance. In Table 4 all four of these coefficients are statistically 
significant, indicating bidirectional volatility spillovers.  

The evidence of speculative activity, as measured by Working’s T, on cash and futures price 
volatility is somewhat mixed. When models are estimated using the restriction from equation 
(14) the coefficients indicate that a higher Working’s T index predicts a higher conditional 
variance for futures prices. Results are compared in Table 5. However, conditional covariance 
matrices are positive definite in all periods even without imposing equation (14). Furthermore, 
restricted models are regularly rejected using the likelihood ratio tests. Therefore, we suggest 
that the unrestricted model is the more appropriate model specification. Within that 
specification, we find robust evidence that higher speculative presence is associated with lower 
conditional variances of futures prices. Working’s T calculated using the proportional method 
suggested by Irwin and Sanders (2010) reveals an average Working’s T index of only 1.03, much 
lower than any of the twelve agricultural futures markets analyzed by Irwin and Sanders 
(2010). Estimated results and descriptive statistics on Working’s T jointly suggest dairy futures 
markets would benefit from stronger speculative presence which would increase market 
liquidity.  

Conclusions 

The purpose of this paper is to evaluate price discovery, volatility spillovers and impacts of 
speculation in the U.S. dairy sector. In order to appropriately model the information flow 
between cash and futures markets, it is important to understand the time series properties of 
both cash and futures prices. This article contributes to the debate on presence of unit roots in 
commodity prices by pointing out that production theory, which predicts cash commodity 
prices will be mean-reverting when the production function exhibits constant returns to scale, 
can be reconciled with the efficient market hypothesis which is consistent with unit root 
process for futures prices. In a theoretical analysis we demonstrate that when the underlying 
cash price series does not have a unit root, nearby futures price series can be nonlinear, 
exhibiting a martingale process within each contract segment, and mean-reverting changes at 
contract rollover points. While this theoretical result will not map easily to annually harvested 
commodities, we do find evidence that cash and futures dairy prices exhibit properties 
suggested by this analysis. 

To deal with the data issues, a new ECM-BEKK-MEX model is developed which includes an 
error-correction model for price levels and an augmented GARCH-BEKK variance model. Unlike 
regular BEKK models which impose severe restrictions on the use of additional regressors in 
the variance equation, the BEKK-MEX model can handle additional regressors very flexibly, 
while preserving positive definiteness of the conditional variance matrix. The ECM-BEKK-MEX 
model developed is utilized in an analysis of cheddar cheese cash and futures markets. Results 
suggest futures markets represent the primary center for price discovery, although both 
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information flows and volatility spillovers are bidirectional. Net long speculative positions do 
not forecast the direction of change of futures prices, but more speculation, as measured by 
Working’s T index, is associated with a lower conditional variance of futures prices in the next 
period. The results may challenge beliefs popular among many policymakers, but are in fact 
consistent with the recent literature on the role of speculators in agricultural commodity 
markets.  

Future research is planned to address the price discovery role of spot CME dairy markets 
using high-frequency futures price data. Because of the differences daily in trading periods 
between cash and futures markets for dairy, use intra-day futures would provide a better 
understanding of the role of cash prices in futures price discovery.  
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Table 1.  U.S. Dairy Markets 2000-2013 – Descriptive Statistics 

 No. Obs. Average St. Dev. Minimum Maximum 
Cheddar Cheese      
      Spot Price 652 1.52 0.28 1.05 2.24 
      2nd Nearby Futures 652 1.54 0.26 1.09 2.23 
Class III Milk      
      Open Interest 652 36,986 12,688 11,352 63,336 
      Commercial Long Position (% of OI) 652 62.20% 8.88% 35.92% 38.59% 
      Commercial Short Position (% of OI) 652 54.76% 8.36% 82.45% 76.04% 
      Noncommercial Long Position (% of OI) 652 7.97% 5.11% <0.01% 33.26% 
      Noncommercial Short Position (% of OI) 652 6.64% 3.73% <0.01% 16.83% 
      Non-reportable Long Position (% of OI) 652 13.87% 3.90% 6.97% 28.83% 
      Non-reportable Short Position (% of OI) 652 22.63% 5.81% 12.30% 24.69% 

 

Note: To make cheddar cheese spot and futures prices comparable, cheddar cheese spot price is created as a simple average of spot 
prices for 40lbs blocks and 500lbs barrels price augmented by 3 cents.  
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Table 2: Unit root tests 

 

 

 

 

 

 

 

 

 

 

Note: Reported numbers are t-statistics used for unit-root tests. Significance at 10%, 5% and 1% is indicated with 
one, two, and three stars respectively. For augmented Dickey-Fuller (ADF) and Phillips-Perron tests optimal lag 
length is determined using AIC criteria. For cash prices, deseasonalized series is used in tests.  

 Augmented 
Dickey-
Fuller 

Phillips-
Perron 

Modified 
Aug. Dickey-

Fuller. 
Cash Cheddar Cheese   -3.99***   -4.08***   -3.99** 
Cheese Futures: 1st nearby   -2.77*   -3.13**   2.46 
Cheese Futures: 2nd nearby   -3.03**   -2.95**  -0.55 
Cheese Futures: 3rd nearby    -2.88**   -2.89**  -0.65 
Cheese Futures: 4th nearby   -2.50   -2.71* -1.26 
Cheese Cash – Futures 1st  nearby -10.11*** -10.54***    -5.42** 
Cheese Cash – Futures 2nd nearby   -3.90*** -12.46***   -17.24*** 
Cheese Cash – Futures 3rd nearby   -6.38***   -7.08***     -10.61*** 
Cheese Cash – Futures 4nd nearby   -4.46***   -5.52***      -7.73***

Class III Milk Futures: 1st  nearby   -2.59*   -2.82*   1.88 
Class III Milk Futures: 2nd nearby   -2.60*   -2.53       -0.20 
Class III Milk Futures: 3rd nearby   -2.47   -2.48       -0.25 
Class III Milk Futures: 4th nearby   -2.50   -2.42  -0.80 
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Table 3.  Estimation Results – Price Level Model 

Variable Cash Price 
Equation  

Futures Price 
Equation 

1tc   0.04 
(0.03) 

<0.01
(0.03) 

2tc   0.03 
(0.04) 

-0.01
(0.03) 

3tc   -0.02 
(0.04) 

<0.01
(0.03) 

4tc   -0.02 
(0.03) 

-0.07***

(0.03) 

1tf   0.31*** 
(0.05) 

0.02
(0.04) 

2tf   0.13*** 
(0.04) 

0.06
(0.04) 

3tf   0.10**

(0.04) 
0.08**

(0.04) 

4tf   0.05 
(0.04) 

0.03
(0.04) 

1 1t tc f   -0.31*** 
(0.02) 

0.05**

(0.02) 
Note: 10%, 5% and 1% confidence levels marked with *, **, and *** respectively.  
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Table 4. Estimation Results – Volatility Model 

BEKK   MEX
Parameter Estimate  Parameter Estimate

11b  0.002 
(0.002) 

 
1   0.06

(0.05) 

21b  -0.034 
(0.034) 

 
12  -0.06

(0.08) 

22b  -0.048*** 

(0.012) 
 

2  0.49***

(0.13) 

11a  0.258*** 
(0.045) 

 
1  0.30

(0.19) 

12a  -1.039*** 
(0.349) 

 
12  -1.45***

(0.21) 

21a  -0.382*** 
(0.055) 

 
2  -3.39***

(0.37) 

22a  1.674*** 
(0.478) 

 

11g  0.699*** 
(0.065) 

 

12g  1.308*** 
(0.486) 

 

21g   0.164*** 

(0.056) 
 

22g   3.568*** 
(0.496) 

 

Note: 10%, 5% and 1% confidence levels marked with *, **, and *** respectively.  
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Table 5. The impact of Excess Speculation on Conditional Variance of Futures Prices 

 

Note: Presented coefficients are denoted with 2 in equation (21).   

 
    
Working’s T Index 
Calculation 
Method 

   Unrestricted correlation Restricted correlation LR test§

Avg. Min Max Log-like. Coeff. Log-like. Coeff. 

Proportional 1.03 1.00 1.08 2890.88 -3.39***

(0.37) 
2879.76 0.19** 

(0.08) 
22.24***

Upper bound 1.16 1.06 1.29 2892.35 -1.14***

(0.34) 
2886.19 0.19*** 

(0.03) 
12.32***

Lower bound 1.02 1.00 1.09 2887.65 -1.46***

(0.71) 
2882.74 0.23*** 

(0.09) 
9.82***
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Figure 1. Constructing nearby futures price series 

 

Note:  Solid line segments are contatenated to create the 1st nearby futures price series. 

126

128

130

132

134

136

138

140

C
on

tr
ac

t I
nd

ex
 (

Ja
n 

20
00

 =
 1

)



26 
 

Figure 2. US. Mailbox Milk Price vs. Monthly Average Cheddar Cheese Price 
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Figure 3. Average absolute value of cheese cash-futures spread, as a function of time to 
maturity.  
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Appendix A. Time Series Properties of a Nearby Futures Price Series when 
Cash Price is Stationary 

Suppose a cash price series for some commodity is second-order stationary. Suppose 
further that a futures contract is written for that commodity, and for simplicity, assume that 
there is no basis at futures contract expiry, i.e. the terminal futures price equals the cash price 
at the contract expiration. Finally, assume that futures prices are efficient and embody no risk 
premium. This appendix contains the analysis of time series properties of an n-th nearby 
futures price series when the above assumptions hold.  

Let  be the unconditional mean of the cash price, and 2
c be the unconditional 

variance. By the Wold decomposition theorem (Wold, 1954), there exists the unique 
fundamental moving average representation of the cash price stochastic process:  

 
0

t i t i
i

c   





   (A.1) 

 

where    0 1, 0,E 0, k.t t t kE         Denote futures price at time t for a contract that 

expires at time T by T
tf . Efficient futures prices that do not incorporate risk premiums will be 

unbiased predictors of cash prices at contract expiry:  

  T
t t Tf E c  (A.2) 

 

Using Wiener-Kolmogorov prediction formula (Hansen and Sargent, 1980) futures 
prices at time t can be expressed as 

 
 

0

T
t t T t i t iT t

i

L
f

L


    



  


 
    

 
  (A.3) 

 

where the annihilation operator   replaces all negative lag values by zero. An alternative, and 
equivalent expression for (A.3) is  

 T
t i T i

i T t

f   



 

    (A.4) 

 

Exploiting notation in (A.4) it will be shown that under the assumptions of this model, any 
change to futures prices of a single contract must come from unanticipated information shocks

1t  . First, 1
T

tf  are expressed using Wiener-Kolmogorov formula as  
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  1 1 1 11
( 1)

T T
t i T i i T i t t T t tT t

i T t i T t

f f         
 

       
    

         (A.5) 

 

Since  1 0t tE     it follows that 1
T T

t t tE f f    and the martingale property of futures prices of 

the same contract is established. If in addition fundamental moving average coefficients 
increase in absolute value as their index decreases (e.g. this would be the case for AR(1) models) 
then the conditional variance of futures prices  

 2 2
1 1

T
t t T t cVar f         (A.6) 

 

will be increasing as time to maturity decreases. This is the well-known “Samuelson Effect“ 
(Samuelson, 1965).  

From the analysis undertaken above, it would be wrong, however, to conclude that 
because prices within a single futures contract are martingales that an n-th nearby futures 
(that is a single time series of prices constructed across different maturities) price series will 
necessarily exhibit the same property. Let the first nearby futures price series be constructed by 
rolling contracts over one day before the delivery date:  

  31 1 2 2

1 1 2 21 1 1 1,..., , ,... , ,...TT T T T
T T T TF f f f f f   (A.7) 

 

It will help to take a closer look at the MA representation of futures prices around the rollover 
date:  
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 (A.8) 

 

The difference in consecutive futures prices of this nearby series at rollover time is 

  1

1 11
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Only the first part of the difference, 
1k k kT T T 
  , is not known at time 1kT  , while the second 

part, the infinite sum, is fully known at that time. It follows that  
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The first nearby futures price series will not have the martingale properties, and changes in the 
nearby price sequence at rollover time are partially predictable. To give a simple example, 
suppose that current first nearby contract is the March contract, and tomorrow the first nearby 
contract will be the futures price for delivery in April, i.e. rollover is to occur tomorrow. Then 
the expected change in the first nearby price series is the simple difference between today's 
futures price for April delivery and today's futures price for March delivery.  

Further insight can be extracted from (A.10). If it so happens that the cash price at time 1kT  , 

1
1

k kT i T i
i

c   







  is above the long run mean  , then the sum 
1

ki T i
i

 




 will be positive. 

When fundamental moving average coefficients are monotonically declining in absolute value, 
i.e. , , 0i ji j a i j     then the infinite sums from expression (A.8) can be ordered in 

absolute value: 
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If condition (A.11) holds, and 
1kTc 

  then  
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  . In other words, the 

predictable component in the first nearby price change at contract rollover will be mean-
reverting. In addition, because cash price is assumed to be second-order stationary, moving 

average coefficients are square summable, i.e. 2

0
i

i






  . This implies that  

 lim 0i i   (A.12) 
 

Since for a fixed ,t  kk T t   it follows that 
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 (A.13) 

 

In words, the long-run expected value of the first nearby futures price series is the 
unconditional mean of the cash price. This characteristic is shared with any second-order 
stationary series: if a variable is second-order stationary then forecasts of the variables value 
far into the future will eventually converge to an uninformed prior which is the unconditional 
mean of the variable. That must be so since any shocks that explain current deviations of that 
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variable from its unconditional mean will eventually die out. The result that the long-run 
forecast of the first nearby futures price series is the unconditional mean of the cash price 
stands in sharp contrast to characteristics of series that exhibit martingale properties. For such 
a series,  limk t t k tE x x   , i.e. all shocks are permanent, and the long-run forecast is equal to 
the last observed value of the variable. 

The argument that the first nearby price series will be mean-reverting at contract 
rollover carries forward to the n-th nearby series, which is demonstrated by comparing the first 
and an n-th nearby price series at rollover. For the first nearby series, price change at rollover 
time is given in (A.9).  Since futures prices are assumed unbiased predictors of future cash 
prices, (A.9) can be rewritten as  

 1

11 1
k k

k k k k k k

T T
T T T T T Tf f E c E c

           (A.14) 

 

Similarly, for the n-th nearby price series, 1

11 1
k n k n

k k k k n k k n

T T
T T T T T Tf f E c E c  

            . From (A.12) 

it follows that  

 1
1lim 0k n k n

k k

T T
n T Tf f  
    (A.15) 

 

In other words, the predictabile part of price change for n-th nearby contract at rollover time 
will be smaller the higher the n is. Mean-reverting changes at contract rollover will be most 
pronounced in the first nearby, less so in the second nearby, and even less in the third nearby 
price series, etc.  

In conclusion, it is shown that when the cash price series is second-order stationary, 
futures prices for a specific contract will be a martingale, but not a random walk, as random 
walk assumes constant variance of shocks. In contrast, we expect to see the Samuelson effect, 
i.e. increases in futures price volatility as time to maturity declines. Furthermore, the n-th 
nearby futures series will be nonlinear, having martingale properties within each contract 
segment, and mean-reverting changes at contract rollover. When fundamental MA coefficients 
are monotonically declining in absolute value, mean-reverting change at contract rollover will 
be less pronounced for further horizon series.  


