Some Questions About and Consequences of Deregulating Reconstituted Milk

by

Andrew Novakovic

April 1980
The Community Nutrition Institute (CNI) joined four individuals last August in petitioning the Secretary of Agriculture to call a hearing on federal milk marketing order provisions regarding reconstituted milk. Since then, the Secretary has invited opinions on whether a hearing should be scheduled. The Secretary and Congress have been flooded with mail protesting what has come to be known as the CNI proposal and requesting that it be dismissed without a hearing. Although the initial inclination of the Secretary appeared to be to call a hearing, the vociferous protests by dairy farmers won a 45-day delay in the deadline for filing opinions on the desirability of having a hearing. With the passing of the delayed deadline at the end of February (1980), there is even some uncertainty now as to whether a hearing will be convened.

The fact that a hearing has not already been scheduled is due to broad and strong opposition to it by dairy farmers and dairy processors. Although the intensity of opposition to the proposal may vary somewhat regionally, dairy farmers nationwide have presented a solid coalition opposed to the proposal. In an unusual display of unity and agreement, dairy processors have also strongly voiced their opposition. Producers and processors may not agree on all aspects of the issues surrounding reconstituted milk, but they definitely agree that the merits of deregulating reconstituted milk do not warrant a hearing.

One of the major criticisms voiced by opponents of the proposal, and perhaps one of the most effective arguments contributing to the Secretary's delayed response, is the need for further research into the consequences of the proposed deregulation. The remainder of this paper is devoted to discussing what we need to know, what clues we already have, what facts we still must ascertain, and some thoughts on the impact of deregulating reconstituted milk.¹

¹ The paper by Novakovic and Story (4) provides additional background information and also discusses possible consequences of the proposed changes.
Current Regulations

A detailed explanation of federal order provisions for reconstituted milk can be quite complex. To keep from losing sight of the forest, I will avoid the complexities and try to distill out the essential elements of the answer. Federal milk marketing order pricing provisions are designed to ensure that handlers at least pay the Class I price for milk used to produce a Class I product regardless of the original source of that milk. When a handler buys powdered milk he is not involved with purchasing milk from a farmer, so the handler is not required to pay the entire Class I price into the pool (producer settlement fund). Based on the assumption that reconstituted milk used in Class I is displacing producer milk and, therefore, must be valued at least at the Class I price, orders require that handlers, in essence, pay the difference between the Class I and II prices (the Class I differential) for the fully reconstituted skim milk equivalent of any nonfat dry milk powder used to produce any milk product. Actually, there are a couple of specific ways for dealing with reconstituted milk, but the bottom line is that a handler will end up paying the Class I differential for the full milk equivalent of any powdered milk used. It should be recognized that by the time a handler pays for transporting, storing, and processing the powdered milk, the additional payment of the Class I differential makes reconstituted milk more costly than fresh milk.

There are various state laws and regulations that also play an important part in determining the legality or practicality of using reconstituted milk. Hammond et al. (2, pp. 19-20) report that only two states do not have regulations which significantly restrict the use of reconstituted milk. In 25 states, reconstituted milk is either directly prohibited or effectively eliminated from the market by a pricing provision similar to that under federal orders or by a product code. The remaining 23 states have package labeling laws which do not prohibit the sale of reconstituted milk but which do limit the product's acceptability to consumers. A summary of the regulations affecting reconstituted milk in northeastern states is given in Table 1.

There are other types of regulations not specifically identified by Hammond et al. which affect the use of reconstituted milk. For example, legal definitions for (white) beverage milk in New York do not allow for reconstitution. This means that if a handler made a reconstituted beverage milk product in New York it could not be called milk. Filled milk is treated this way in many states. A filled milk product was marketed in Indiana a couple of years ago under the name of MOO and was called "whole milk substitute; because it could not be called "milk." In New York such products have been called Melloream. Other states may treat reconstituted milk similarly.

2 A more detailed discussion of federal and state regulations related to reconstituted milk is contained in the bulletin by Hammond et al. (2).

3 This is true whether the powder was used in a Class I or Class II product, but it should also be noted that there is no economic justification for using powder instead of fresh milk in Class II, given the Class II price and the cost of reconstituted milk.

4 Twelve of the 25 states with other regulations also have labeling laws, according to Hammond et al. (2, p. 20).
In addition to these problems, the sale of reconstituted milk would also be complicated by state resale pricing laws, as exist in Pennsylvania and New Jersey, and handler licensing laws, as exist in New York. Resale pricing laws on beverage milk could eliminate the possibility of any differences in consumer prices between fresh and reconstituted milk products. This would hurt consumer acceptance of reconstituted milk and could thereby discourage sales of reconstituted milk (even though handler or retail margins would be higher with reconstituted milk). State licensing laws could be used to bar or discourage the sale of reconstituted milk particularly by out-of-state processors not affected by in-state pricing regulations (such as state order farm pricing).

The Proposed Changes

How would the CNI proposal change current regulations? Unfortunately, specific proposals, as would be suitable for a hearing, have not been presented. It is clear that the basic purpose of the proposal is to "repeal these restrictive [federal order] regulations pertaining to reconstituted milk products" (1). In other words, CNI would like to eliminate requirements that in essence cause handlers to pay the Class I differential for the reconstituted milk they use. Handlers would pay for reconstituted milk solely on the basis of market costs; any fresh milk they purchased would be priced more or less as it now is.

The CNI proposal does not extend to state regulations pertaining to reconstituted milk; however, it is clear that those state regulations would not be immune to changes in federal order pricing provisions.

Two Questions We Need to Answer First

A thorough analysis of the major consequences of deregulating reconstituted milk requires answers to a host of preliminary questions. What is the price elasticity of the supply of farm milk? How much does it cost to make nonfat dry milk? How much does it cost to recombine powdered milk and water? What are the energy costs of using fresh milk or reconstituted milk? What are existing drying capacities in various regions?

There is quite a bit of reliable information concerning these and many similar questions. In general, the questions about relative costs and supply response have been fairly easy to answer. However, there are two questions that have not been easy to answer, and their answers are fundamental. These are:

1. What is the demand for fully or partially reconstituted milk products, i.e., what quantities of such products would be sold at various prices relative to the price of fresh milk products? How is the demand for fresh milk affected?

2. How will changes in pricing provisions affect state or remaining federal order regulations? Will changes in other state and federal order regulations be required for consistency, compatibility or some other reasons? Will other regulations be viable or modified so as to remain viable?
<table>
<thead>
<tr>
<th>State</th>
<th>Direct State Prohibition of Reconstituted Milk</th>
<th>Grade A Powder Must be Made From Grade A Milk</th>
<th>State Order Pricing Provisions</th>
<th>Labeling Requirements</th>
<th>Reconstituted Milk Product Other Than Buttermilk is Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>?</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Delaware</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Maine</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Maryland</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>New Jersey</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>New York</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Vermont</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Total Yes</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Consumer Acceptance

Much of the analysis of the CNI proposal hinges on the first question. If consumers will not drink commercially reconstituted milk or blends of reconstituted and fresh milk (blended milk), then any question about deregulating reconstituted milk is moot. If the only consumers who like reconstituted milk or blended milk are the ones already reconstituting milk at home, then it is unlikely that they will find the convenience of commercial reconstitution worth the extra cost. On the other hand, if consumers would find commercially reconstituted milk to be identical to fresh milk, then it is clear that processors would use the cheapest raw product. In some cases, that would still be fresh milk, but this would portend a wholesale switch to reconstituted milk.

As with most answers, the truth is somewhere between these two extremes. Unfortunately, there is not hard or conclusive evidence to strongly point to just where the answer lies. Hammond et al. refer to conversations they have had with dairy food technologists who believe "that a blended fluid whole milk or low fat product with up to 50 percent reconstituted milk would be indistinguishable in taste from a totally fresh milk product" (2, p. 5). They also cite a study by Herreid and Wilson which states "beverage milk of acceptable palatability can be prepared from sterilized cream, low-heat powder of good quality, and potable water" (3, pp. 24-28). These statements imply that totally reconstituted milk products are less than perfect substitutes for fresh milk products, but milk products made from no more than 50 percent reconstituted milk are perfect substitutes, in the sense that consumers can not taste any difference.

My own consultations with Cornell University and Pennsylvania State University food scientists suggest that reconstituted milk may be an even closer substitute for fresh milk than that. One food scientist with a long history of experience with dairy products and dairy technology maintains that there should be absolutely no difference between reconstituted skim milk and fresh skim milk, assuming the milk is made from fresh ingredients and under proper conditions. He also maintains that reconstituted whole milk made from high quality dry whole milk or nonfat dry milk and fresh cream is indistinguishable from fresh whole milk. In addition, low fat milk made by blending reconstituted skim and fresh whole milk or fresh cream is indistinguishable from fresh lowfat milk. If butter is used instead of cream, then the flavor is adversely affected. This comes very close to accepting the extreme conclusion that consumers are totally indifferent between reconstituted and fresh milk products.

It has also been suggested that reconstituted milk products have a shorter shelf life than fresh products. The food scientists with whom I talked see no reason why reconstituted milk should necessarily be any more perishable than fresh milk. Again, the key to the comparability of the two products is equally high quality processing techniques and fresh ingredients. One food scientist did note that, in practice, reconstituted milk does seem to be more perishable, especially milk reconstituted in the home, but he attributed that to improper processing, in particular not using cold enough water.
There is another more intangible aspect of reconstituted milk that affects consumer acceptance, and that is simply the name. It is well known that consumers prefer fresh products to reconstituted products, even if the two products taste, look and are nutritionally identical. In the approximately 35 states that have laws requiring reconstituted milk products to be labeled as such (2, pp. 19-20), this could be an important factor in discouraging consumer acceptance of reconstituted milk. It should be recognized, however, that the intangible effect of the name "reconstituted" could be overwhelmed by the economic inducement of a lower price, if reconstituted milk is similar to fresh milk in the tangible aspects of flavor, appearance, and nutrition.

Finally, consumer demand for reconstituted milk would be dynamic. In other words, consumer acceptance of reconstituted products could be poor or modest at the outset and then grow over time. Consider, for example, the use of reconstituted fruit juices. Consumers have long accepted frozen concentrated juices, reconstituted at home, as the cheapest, most logical way for them to buy fruit juices. Many consumers may not remember or know what fresh juices even taste like. In addition, many consumers are now buying commercially reconstituted fruit juices, even though frozen concentrate is usually cheaper. Many of these consumers seem to think that reconstituted fruit juice is somehow better or believe it is not much different from fresh fruit juice. This analogy suggests that if the initial cost incentive to consumers is great enough and if it is a reasonably good substitute to begin with, acceptance of reconstituted milk could grow.

Effectiveness of Remaining Regulations

Unless it is assumed that consumers will totally reject reconstituted milk products, analysts must also confront a second problem. That is the question of the viability of remaining federal order and state regulations after reconstituted milk is deregulated in federal orders.

Regulators will have two problems. First and foremost is enforcement. If deregulation of reconstituted milk means that regulators will be required to deal differently with fresh and reconstituted milk products, then the regulators must be able to distinguish between the two. For reasons similar to those discussed in connection with consumer acceptance, it is not at all clear that this would be possible; in fact, it seems unlikely.

Even if it is possible for regulators to properly identify similar products that are regulated differently, there may be a second problem of having remaining regulations that are inconsistent or unenforceable for other reasons. For example, state orders would not be required to change because federal orders were amended, but out-of-state processors could inflict considerable harm to fluid processors subject to state orders because their costs were so (artificially) unequal. Or, suppose reconstituted milk so thoroughly displaces fresh milk in Class I that federal order blend prices virtually equal the Class II (or III) price. Such a situation would eliminate a major function of the orders. Thus it is possible that the proposed deregulation could severely disrupt other regulations even if they are theoretically enforceable, either by making them fruitless or by creating other undesirable side effects.
Speculations on the Impact of the Proposed Deregulation

At this stage it is very difficult to do a well-defined, narrowly focused analysis of the consequences of deregulating reconstituted milk. This is because the proposals are not clearly defined, and, even if they were, there are so many important questions that are unanswered. We have to make too many assumptions at this point.

Although we are constrained to dealing in generalities and assumptions, it is probably useful to consider possible consequences. For the remainder of this paper, I will speculate on what could develop as a result of deregulating reconstituted milk. First, I will assume that the type of deregulation that would occur would permit handlers to deduct the skim milk equivalent of any nonfat dry milk used to produce a beverage milk product from Class I use. There would be no concurrent change in other order provisions or regulations. Second, I will assume that consumers will buy reconstituted milk, either by itself or blended, in sufficient quantities to justify its sale. Third, I will not make a specific assumption about the ability of regulators to clearly identify fresh, reconstituted, and blended milk products. The possibility that they could do that is remote. Even if they could, or even if processors would follow all regulations to the letter voluntarily, the impact on the results is marginal. That is, the degree to which regulations are enforced and are enforceable affects the degree or level of the results, not the direction of the outcomes.

Where Will It All Come From

Studies indicate that if one wants to transport milk in excess of 500-600 miles, it is cheaper to dry milk and ship powder than it is to ship an equivalent amount of fresh milk. Most analysts, like Hammond and his colleagues, have assumed that the large milk surplus regions of the upper Midwest will be the major, if not exclusive, source of powdered milk for reconstitution. Specific numbers on drying capacity are not available, but very crude estimates can be made based on the amount of products dried during the seasonal peak.

The states having the largest drying capacity in the Midwest are Minnesota, Wisconsin, and Iowa; Minnesota has about one-half the total of these three states. California ranks about second, just behind Minnesota. Wisconsin is third. New York and Pennsylvania rank about fifth and sixth, but the sum of their drying capacity is not quite as large as Wisconsin's alone. The three midwestern states represent about 45 percent of total U.S. drying capacity.

Total peak monthly production of dried milk in these three states

California ranks about second, just behind Minnesota. Wisconsin is third. New York and Pennsylvania rank about fifth and sixth, but the sum of their drying capacity is not quite as large as Wisconsin's alone. The three midwestern states represent about 45 percent of total U.S. drying capacity.
milk products equaled about 60 million pounds. If all of this milk was nonfat dry milk (about 92% actually was in 1977), this would be equivalent to about 650 million pounds of skim milk. If nonfat dry milk were produced at this rate all year, annual production in these three states would be equivalent to about 7.8 billion pounds of skim milk.7

This amount of skim milk equaled about 15 percent of all fluid milk products sold and about 45 percent of the lowfat and skim milk products sold in the U.S. in 1979. It is about three times larger than all skim milk sales. This amount of skim milk is equal in weight to almost the entire amount of milk produced in Pennsylvania in 1979. It represents about 22 percent of the milk produced in Minnesota, Wisconsin, and Iowa and about 6 percent of the U.S. milk supply. Given the nature of these numbers on dry milk, these precise figures may not be particularly meaningful, but they do give some sense of proportion to the potential use of reconstituted milk. Regardless of consumer preferences for reconstituted milk, there are physical limits to its availability. New drying facilities could be built, but it is doubtful that powder manufacturers would do so without very strong and persistent incentives.

There is no question that processors would have an economic incentive to substitute reconstituted milk for fresh milk. The Milk Industry Foundation has recently estimated that the cost of drying milk then storing, transporting and processing the powder would exceed the Class III price in Chicago by $1.73 and would exceed the Class II price in Boston by $1.87. The minimum Class I differential in the city zones of the markets represented by these two cities are $1.26 and $2.92, respectively. Clearly, Boston processors could use reconstituted milk more cheaply. But if one considers that processors in Chicago have been paying over-order charges of about an additional $.89, then it becomes apparent that there could even be an incentive to switch to reconstituted milk in Chicago.

The Class I differential ranges from $1.12 in the Upper Midwest Order to $3.15 in the Southeastern Florida Order. In 30 of the system's 47 federal orders, the Class I differential is greater than $1.75; in 18 orders, the Class I differential is greater than or equal to $2.00. As these figures illustrate, handlers in many areas of the country would find reconstituted milk cheaper than Class I milk if they did not have to pay the Class I differential.

State Regulations

Different types of state regulations would be affected differently. Any state with a direct prohibition (about seven states (2, pp. 19-20)) or a restrictive product code (approximately nine more states (2, pp. 19-20)) would continue to have the authority to make the sale of reconstituted milk illegal; whether or not they could enforce such laws is another matter.

7 Reconstituted milk can be made from condensed milk as well as dry milk. If all these drying facilities were used to make condensed milk, much more milk could be condensed. The capacity for condensing could be nine or ten times greater than for drying. It should also be remembered, though, that the greatest savings in shipping accrues to powdered milk.
The states which have state order pricing provisions similar to current federal order provisions, but do not have other restrictive regulations (ten more according to Hammond et al., pp. 19-20), would be much less protected from the effects of deregulating reconstituted milk in federal orders. In these states, which include New York, New Jersey and Pennsylvania, competition from out-of-state handlers for beverage milk sales could force the states to choose between changing their own pricing provisions or letting their intra-state fluid processing sector disintegrate.

Minimum resale price regulations could also complicate matters, assuming the same prices for fresh milk would be applied to reconstituted milk. In 1978, Shaw and Levine report that six states set minimum wholesale and retail prices (including Maine, Pennsylvania, and Vermont); minimum wholesale prices are set in three more states, and minimum retail prices are set in another two states (including New Jersey) (5, p. 13). If resale pricing regulations prevent reconstituted milk prices from being less than fresh milk prices, consumers won't be inclined to switch from fresh to reconstituted milk. But if reconstituted milk prices were significantly lower in neighboring states, it would be difficult for these states to maintain their regulations. Interstate competition could eventually force all states to change their regulations to accommodate the sale of reconstituted milk.

Federal Orders

The impact of deregulating reconstituted milk on the overall efficacy of the federal order system is of great concern for two reasons. First, if reconstituted milk were adopted on a large scale, Class I utilization in federal orders would drop. As Class I utilization falls, the blend price becomes closer to the Class II price. If the federal order pricing system transforms into a flat pricing system, much of the value of and reason for the order system is lost.

Even if the amount of reconstituted milk used by handlers is not sufficiently large to eliminate or drastically reduce the amount of Class I milk in an order, the order system would still be confronted with a second difficult problem. That is maintaining the reliability of federal order audits of handler records. A processor's pool obligation, and consequently the blend price, is based on the processor's reported purchases of raw milk from various sources and the use of raw milk in various classes. A few months after a handler files his report with the Market Administrator, an auditor reviews the handler's records to verify, to the extent possible, their accuracy and authenticity. The auditor has access only to the records kept and given to him by the handler. Such records include financial records on payments or receipts for products sold and bought and records of the quantities of products bought and sold. Assuming everything is honest and above-board to begin with, the auditor will serve to verify that the handler has not made an error due to carelessness or ignorance. In such cases, an audit is just as likely to save the handler money as it is to cost the handler.
Unfortunately not all handlers can be expected to deal with a Market Administrator in a legitimate fashion. Moreover, the proposed changes could provide less scrupulous handlers with strong incentives to report their purchases and sales inaccurately. If handler records are falsified, an auditor has no way of knowing which products are made from what ingredients. A handler would have to be very clever and thorough to falsify all of his records in such a manner as to totally deceive an auditor. That is, records showing how much raw milk or powder is purchased and how much is used to produce dairy products should be in reasonable agreement. However, unless the handler is very inept, an auditor may be able to do little more than disclose suspicious record keeping. It could be very difficult to prove that records were falsified.

If a few unscrupulous handlers forced other handlers to adopt similar practices or face extinction in the marketplace, it is possible that this problem could quickly proliferate. Depending on how much Class I milk was displaced, this would aggravate an already bad price situation from the farmers' standpoint; in other words this would increase the pressure on blend prices to move towards the Class II price.

The Structure of the Processing Sector

The prospect of strong consumer acceptance of reconstituted skim milk and no federal order regulations on reconstituted products has interesting implications for the structure of the processing sector. In areas where there is sufficient cost incentive, new individuals or firms could enter the processing sector with the sole intention of selling reconstituted milk. Such a new entrant could buy only dry milk and thereby avoid dealing with dairy farmers and Market Administrators.

Whether a handler contracts with an independent hauler or does his or her own hauling, milk assembly is a costly operation. Raw milk is highly perishable so it must be handled properly and promptly. Handlers buy milk from scores of producers. This increases accounting and management costs. Whether it is a service provided by a cooperative or taken care of in the handler's lab, testing and weighing each farmer's milk adds significantly to a handler's costs. If a handler could bypass all of these costs and headaches by buying only dry milk and producing reconstituted milk products, it would mean a tremendous cost savings. Somebody will always have to deal with milk assembly costs, but perhaps individual handlers could avoid them altogether.

A second major advantage garnered by a reconstituted milk processor involves the production schedule. Raw milk must be handled in a timely fashion in the processing plant as well as on the receiving dock. Dry milk powder can be stored for long periods at a low cost. Thus, a reconstituted milk processor is far better able to maintain a daily, weekly, and seasonal production schedule that suits his or her needs and desires than a fresh milk processor is.

A proliferation of reconstituted milk processors would shift a major burden on to the other processors, in much the same way that the burden of balancing milk supplies is now placed on manufacturers of hard dairy products (usually cooperatives).
The implication of this is that there could be considerable incentive for individuals with little or no previous experience in dairy processing to set up a simple plant to reconstitute milk. Some such plants might work out fine, but it is quite likely that quality control would be poor and the pricing strategies of such firms would be disruptive. One would hope that the marketplace would sort out poor processors, but I am afraid that while the sorting out process is taking place a lot of havoc could be wreaked.

Dairy Cooperatives

Deregulation of reconstituted milk also has interesting implications for dairy cooperatives, apart from the impacts on dairy farmers as individuals. First, dairy cooperatives are the primary producers of nonfat dry milk products; they own the majority of the drying capacity. Thus, an increase in the consumption of nonfat dry milk would be viewed favorably by cooperatives that own drying facilities, other things being equal. For cooperatives that are not pooled under an order, increased consumption could mean a higher price for nonfat dry milk and the farm milk used to produce it. This is a very real possibility for the unregulated plants and Grade B milk producers in the upper Midwest. This is a less likely possibility in the Northeast, where most milk is Grade A and most cooperatives participate in a pool.

An increase in Grade B or Class II or III prices would be perceived as a gain by only some cooperatives, but any manufacturers of dry milk would benefit from the reduced costs associated with operating plants nearer to full capacity over longer seasons of the year. Currently cooperatives own drying facilities to accommodate a spring flush that may last only a few weeks or even days, while running far below full capacity throughout most of the year. Consider for example that nonfat dry milk production late in the year in Minnesota and Wisconsin typically falls below 50 percent of the spring peak.

Taken by itself, increased sales of nonfat dry milk could strengthen dairy cooperatives, but the benefit would be enjoyed very unevenly. Cooperatives with drying facilities for Grade B milk would gain the most. Cooperatives with drying facilities and which have been paying a pool price would enjoy lower plant costs, but their members would get lower prices. Cooperatives without drying facilities would gain nothing from this standpoint.

The second implication of deregulation for dairy coops is also one which affects them unevenly, but in this case the impact is all negative. Fluid milk processors would benefit by being able to buy their milk in a bag rather than a bulk tank. Increased use of dry milk by processors would reduce the negotiating strength of the cooperatives which supply milk to fluid processors. It would also put cooperatives which produce dry milk in direct confrontation with cooperatives that market their members' milk to fluid processors. This definitely implies an opportunity for more regional competition, but there would also be increased competition within marketing areas. The implication for cooperatives that own bottling facilities is particularly interesting. If a bottling cooperative uses its members' milk it could be in the position of pricing its packaged milk out of the market, but if it uses powdered milk, probably purchased from another cooperative, then it has to find an alternative use for its members' milk.
This portends a shift in power among cooperatives from cooperatives with a large Class I market to coops with mostly Class II sales. It would probably be more difficult for cooperatives to negotiate Class I premiums. Grade A milk producers would receive lower prices and their milk would be used less in fluid products. But Grade B milk producers may receive higher prices as sales of nonfat dry milk increase.

The Pros and Cons

The CNI proposal presents economic analysts with a thorny problem, but the conclusions for dairy farmers is very easy. Deregulation of reconstituted milk means a lower price for milk, no matter what kind of reasonable assumption is made. Even if the demand for dry milk increases and causes Class II prices to rise, blend prices will be lower with deregulated reconstituted milk.

Processors probably face a tradeoff. Sales of milk products could increase with the proposed change, which should please the processing industry. On the other hand, the proposed changes portend quite a restructuring of the processing sector. Violent changes in their economic environment will not be welcomed by processors.

The general view of proponents of the CNI proposal is that consumers will be the gainers and these gains will justify the losses incurred by an industry that is overly protected anyway. Consumer gains mean lower prices, but I think the jury is still out on what will happen to consumer prices in the long run. It seems very likely that consumers could enjoy a modest savings on beverage milk in the short run, but whether prices would be lower and milk quality as high a year or two or five after proposed changes are enacted is questionable.

Those who are optimistic think that in the long run the dairy industry would be more lean, healthy, vigorous, and efficient. Those who are pessimistic fear that we may trim away the muscle with the fat and end up with a chaotic environment that would benefit no one. At this point, we can not say with much certainty who is right or wrong on this regard, but the expected benefits are too low and the potential costs are too high to act hastily.

2. Hammond, Jerome W., Boyd M. Buxton, and Cameron S. Thraen, Potential Impacts of Reconstituted Milk on Regional Prices, Utilization, and Production, Station Bulletin 529, Agricultural Experiment Station, University of Minnesota, 1979.

