What Does Dairy Trade Modeling Tell Us?
(About Important Dairy Globalization Issues)

Chuck Nicholson
Smeal College of Business
Penn State University

with Special Guest Mark Stephenson

Annual Workshop for Dairy Economists and Policy Analysts
May 2, 2017
San Diego, CA (my hometown, BTW!)

Outline of the Presentation

• What are key issues and events in dairy globalization?
• How can modeling provide insights?
• What are the challenges (to dynamic modeling of dairy globalization)?
Defining Dairy Globalization

Flows of:
- Dairy products (farm milk)
- Funds
 - Direct investments in production, processing, logistics, promotion
- Information
 - Technology, market intelligence, experience
- Relationship development
 - Partnerships, supply chain coordination

Scope of Dairy Globalization

Drivers:
- Demand growth
 - Income growth, urbanization, food service, policy
- Supply side
 - Milk production growth, export market experience, promotion investments, logistics/infrastructure development
Scope of Dairy Globalization

Drivers:
- Demand growth
 - Income growth, urbanization, food service, policy
- Supply side
 - Milk production growth, export market experience, promotion investments, logistics/infrastructure development

Effects:
- Price convergence
 - Global price discovery
 - Product, farm milk?
- Environmental
 - Land use, GHG emissions, human health
- Other Economic
 - Employment, welfare

Dairy Globalization, 2006-2016

What Hath 10 Years Wrought?

- Price convergence in global dairy markets
 - Increased volatility
 - Cyclical behavior
- Emergence of China as key importer
- Emergence of US as key, consistent exporter
- Phase out of EU production quotas

Price convergence in WMP markets, after 2006
Percentage Changes in Global Exports, 2006-2016

% Changes in Export Volumes, 2003-2013

Source: PSD Data, USDA/FAS
Source: FAO database.

$26 billion to $71 billion total value
Export Market Shares, 2006 and 2016

Source: PSD Data, USDA/FAS
Export Market Shares, 2006 and 2016

Source: PSD Data, USDA/FAS

Import Market Shares, 2006 and 2016

Source: PSD Data, USDA/FAS
Import Market Shares, 2006 and 2016

WMP

- **2006**
 - China: 45%
 - Mexico: 20%
 - Russia: 10%
 - Algeria: 5%
 - Venezuela: 5%
 - Other: 5%

- **2016**
 - China: 40%
 - Mexico: 25%
 - Russia: 20%
 - Algeria: 10%
 - Venezuela: 5%
 - Other: 5%

Fluid Milk

- **2006**
 - China: 60%
 - Mexico: 20%
 - Russia: 10%
 - Botswana: 5%
 - Canada: 5%
 - Other: 5%

- **2016**
 - China: 55%
 - Mexico: 25%
 - Russia: 20%
 - Botswana: 10%
 - Canada: 5%
 - Other: 5%

Source: PSD Data, USDA/FAS

Import Market Shares, 2006 and 2016

NDM/SMP

- **2006**
 - China: 40%
 - Mexico: 20%
 - Russia: 10%
 - Indonesia: 10%
 - Philippines: 10%
 - Other: 10%

- **2016**
 - China: 45%
 - Mexico: 25%
 - Russia: 20%
 - Indonesia: 15%
 - Philippines: 10%
 - Other: 5%

Source: PSD Data, USDA/FAS
Butter Markets Show Less Integration

- Butter price spreads larger than for other products
 - Recent changes in the relationship
- Butter more protected by trade policy than other products
- Cause of recent farm milk price divergence?

Farm Milk Price Divergence Re-Emerges, 2014 to ?

- US Prices Higher
- US Prices Lower
Potential Trade Agreements

- Previously, TPP
- Tenuously, TTIP
- Many bilateral agreements?
- NAFTA, revisited?

What are the implications for US dairy market outcomes?

Potential Trade Disputes

- Look north of the US border
Dairy Globalization is Multi-faceted

- Many structural changes
 - EU production quota phase out
- Many short-term events
 - China in and out of butter markets, 2014
 - (Ongoing) Russian trade embargo
- Many proposed modifications to trading relationships
- Many (potential) trade and globalization conflicts

What Can Models Tell Us?

- Explain past developments
- Predict ranges of future outcomes
Current Modeling Approaches*

* Academic models. Other commercial and proprietary models exist.

- GTAP
 - General equilibrium model
 - Limited commodity coverage
- FAPRI-MU International Dairy Model
 - Partial equilibrium dynamic model
- Virginia Tech – Center for Agricultural Trade
 - Mixed complementarity formulation
 - Partial equilibrium

Dairy Globalization Modeling Insights Modeling Challenges

US TPP Impact Analysis
(Through indicated year)

$ million Change due to TPP

TPP Price Impact Analysis
(FAPRI-MU IDM)

What Can Models Tell Us?

• Explain past developments
• Predict ranges of future outcomes
• Organize existing knowledge base
 – Data and behavioral assumptions
• Assess the importance of information
 – Not all information has equal value
• Allow hypothesis testing
 – Are our assumptions about the world really correct?
The Need for a Dynamic Model

- Many phenomena related to globalization are dynamic—they play out over time
- Feedback effects are not well captured in existing partial equilibrium models
 - Even the dynamic ones
 - Or (dynamic) CGE models
- Dynamic complexity: short and long-run effects can differ

The Need for Detailed Product and Component Coverage

- Trade depends on product specifications
- Trade policies also very product-specific
- Products are linked as joint products, as intermediate products and as substitutes in production or in use
Dynamic Global Dairy Supply Chain Model (DGDSCM)

- Production, processing, demand and trade for 15 world regions
 - Complete global coverage
- Monthly evolution of prices and trade flows
- Assessment of past and future scenarios

Model Characteristics:
- 15 regions
- 23 final and intermediate products
- Component balance for milk and product yields
- Supply-chain-based business decisions
- “Dynamic disequilibrium”

Regional Designations
- US (CA)
- Mexico
- Canada
- MENA
- EU
- Russia
- FSU
- China
- Oceania
- Major South America
- Other Net Exporters
- Other Net Importers
- ASEAN

Dairy Globalization Insights Challenges
DGDSM Products

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Final Product</th>
<th>Intermediate Product</th>
<th>Tradable Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Milk</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Yogurt</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Frozen Desserts</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cottage Cheese</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American-type Cheeses</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other Cheeses</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fluid Whey</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separated Whey</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whey Cream</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Whey</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Whey Protein Concentrate 34% Protein</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Whey Protein Concentrate 80% Protein</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lactose</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Butter</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anhydrous Milk Fat (AMF)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nonfat Dry Milk</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Infant Formula</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Condensed Skim Milk</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other Evaporated, Condensed & Dry products</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Caseinates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MPC, < 50% protein</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MPC, >= 50% protein</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

DGDSM Dynamics

Farm Level:
- Profitability and expectations drive cow numbers and milk per cow
- Asymmetric response to profitability changes
 - Less responsive to downturns
- Milk price derived from product prices

Processing Sector:
- Production volumes driven by profitability and demand
 - NDM and butter are residual products
- Price-setting based on inventory coverage
 - Product stocks
DGDSCM Dynamics

Product Demand:
- Base levels of final use “commercial disappearance”
- Final demand based on assumed annual growth rates and prices
- Intermediate product demand endogenously determined
 - Costs of selected feasible combinations

Trade Flows:
- Based on previously observed levels
- Changes driven by changes in relative landed prices
 - Including transportation costs and exchange rate factors
- Base levels updated over time by recent experience
 - “Anchoring and adjustment”

We Assess Globalization with Limited, Inconsistent Data

- Inventory data lacking for price discovery
- S&U data often lack consistency
 - Especially for component balance
- Import and Export totals differ
- Trade policy database not generally available

Dairy Globalization Modeling Insights Modeling Challenges
Example of Data Inconsistency:
All Cheese, Canada, 2013

Note: All of the values differ for the three sources!

Production
Imports
Exports
Balance

PSD
FAO
Statistics Canada

Note: All of the values differ for the three sources!

Major Effort for Data for Dynamic Model

- Multiple inconsistent sources
- Incomplete sources
- Aggregation
 - Trade policies differ within regions
- Model calibration and evaluation

“Blood, toil, tears and sweat...”
-- Churchill (and Stephenson)
Other (Omitted) Factors

Factors other than (landed) price determine dairy trade flows--now and later

- Working relationships, trust, reputation, joint ventures
- Product characteristics not captured in trade data
- Flows of information and funds (investment) will alter the dairy trade landscape

Coming This Summer to Prime Time

Dynamic Global Dairy Supply Chain Model