

Framing the Green House Gas and Carbon Market Situation for the US Dairy Industry

10/24/23

Christopher A. Wolf, Professor

Trends in US GHG emissions, 1990 – 2020

Change since 1990: fossil combustion -8%*, waste -27%, agriculture +8%

EPA (2022) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. U.S. Environmental Protection Agency, EPA 430-R-22-003. https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissionsand-sinks-1990-2020.

*2020 combustion CO₂ emissions were 509 MMT lower than 2019, mostly due to the pandemic

Trends in US agriculture GHG emissions, 1990 to 2020

Top 3 emissions category increases since 1990: Urea CO_2 +121%, Manure CH_4 +71%, Manure N_2O +42%

Trends in direct GHG emissions from US dairy cattle

Dairy cattle enteric methaneDairy cattle manure nitrous oxide

Dairy cattle manure methane

EPA (2022) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. U.S. Environmental Protection Agency, EPA 430-R-22-003 https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissionsand-sinks-1990-2020

Direct GHG emissions have increased 40%, milk production has increased 51%, GHG intensity is down 7% since 1990

Dairy cattle production GHG emissions: ~1.6% of US GHG emissions

Farm Level Methane Mitigation

Enteric

7

- Feed ingredients/additives
- Feed efficiency
- Genetics
- Manure
 - Anaerobic digester
 - Scrape and dry
 - Pasture based system

Modes of change in production practices

- Regulation driven
 - California
 - Paris Accord
 - Subsidies, standards, taxes
- Market driven
 - Science Based Targets Initiative reports 68 food and ag companies have committed or set science based GHG reduction targets

Current Company Commitments

US Dairy industry stewardship goals

 U.S. dairy cows generate the lowest greenhouse gas (GHG) emissions per gallon of milk in the world,⁴ and the dairy community is committed to continuous improvement for environmental stewardship. This includes a GHG reporting tool and improvement guidance available to all dairy farmers, guidelines and tools to credibly report GHG intensity and reductions for dairy processing, and a voluntary industry-wide goal of GHG neutral dairy production by 2050.

U.S. DAIRY STEWARDSHIP COMMITMENT

Source: https://www.usdairy.com/getmedia/19e026e5-e281-4fa6-b577-cd6ecb342ac6/us-dairy-stewardship-commitment-2020.pdf?ext=.pdf

Cost of Carbon Emissions

- Cost of Carbon = NPV \sum (damages)
 - Damages: crop loss, fires, heat waves, healthcare costs, flooding
 - Depends on discount rate EPA and Biden Admin use r=0.02

- Biden/Obama Admins \$51/ton
- Resources for the Future \$185/ton
- EPA \$190/ton

EPA AgStar Digesters

red = dairy; green = swine; purple = poultry; blue = cattle; gray = mixed use

Amount of digesters by state and year

Number of U.S. Manure-Based Anaerobic Digesters by Year by Energy Source

Source: EPA

Revenue from Digesters

 Sales or value of electricity or RNG produced

 Carbon credits/offsets or Low Carbon Fuel Standard Credits in California

 Renewable identification numbers (RINs) are credits used for compliance, and are the "currency" of the RFS program.

California Air Resources Board Environmental Market Programs

- 1. Cap-and-Trade Program: issues offset credits to digester projects for avoided CH4 emissions
- Low Carbon Fuel Standard (LCFS), which provides biofuel credits to compressed natural gas (CNG)-producing digesters that reduce the carbon intensity of transportation fuels.
- CARB's LCFS credit formula provides digesters with credits for avoided CH4 emissions. Thus, digesters cannot receive both offsets and LCFS credits from CARB for the same period.

Digesters and Environmental Market Credits

Sources: CARB, EPA

Source: O'Hara

Carbon prices per metric ton of CO₂e (10/22/23)

CarbonCredits.com Live Carbon Prices	Last	Change	YTD
Compliance Markets			
European Union	€85.70	-	+7.13 %
UK	£42.85	-	-41.50 %
California	\$29.41	-	+1.17 %
Australia (AUD)	\$31.25	-	-7.54 %
New Zealand (NZD)	\$69.50	-	-9.06 %
South Korea	\$29.00	-	-26.25 %
China	\$11.38	-	+41.30 %
Voluntary Markets			
Aviation Industry Offset	\$0.73	-1.35 %	-80.99 %
Nature Based Offset	\$1.59	-	-65.43 %
Tech Based Offset	\$0.82	-	-28.07 %

19 Dyson | College of Agriculture and Life Sciences | Cornell SC Johnson College of Business

Source: https://carboncredits.com/

Take Home Messages

- Dairy cattle production in the United States is approximately 1.6% of US GHG emissions in CO2e
- Methane (both enteric and manure-sourced) is the most important GHG from dairy cattle production, methane emissions from US dairy have increased in recent decades
- Most of the revenue from digesters from government created environmental credits which creates policy risk and uncertain investment situation